ctmm.boot.Rd
This function allows the point estimates and confidence intervals of an initial estimated movement model to be improved by parametric boostrap, as described in Fleming et al (2019).
ctmm.boot(data,CTMM,method=CTMM$method,AICc=FALSE,iterate=FALSE,robust=FALSE,error=0.01,
cores=1,trace=TRUE,...)
Timeseries data represented as a telemetry
object.
A ctmm
movement-model object from the output of ctmm.fit
containing the initial parameter estimates.
Fitting method to use: "ML"
, "HREML"
, "pREML"
, "pHREML"
, or "REML"
. See ctmm.fit
for descriptions.
Run dual set of simulations to approximate AICc values via Kullback–Leibler divergence. Otherwise, only the AIC is updated.
Iteratively solve for the parameters such that the average estimate (of method
) is that of the data, whereas with iterate=FALSE
only the first-order correction is calculated from the initial estimate.
Uses robust estimates of the average and covariation for debiasing. Useful when parameters are near boundaries.
Relative standard error target for bootstrap ensemble estimates and nonlinear iterations.
Number of simulations to run in parallel. cores=NULL
will use all cores, while cores<0
will reserve abs(cores)
.
Report progress updates. Can be among 0:2
with increasing detail.
Further arguments passed to ctmm.fit
.
A model fit object with relatively unbiased estimates of location covariance, and autocorrelation timescales (and more accurate CIs than ctmm.fit
). If AICc=TRUE
, then, in addition to an updated AICc
slot, the model fit object will also contain a VAR.AICc
slot quantifying the numerical variance in the AICc
estimate. This variance can be decreased by decreasing argument error
.
C. H. Fleming, M. J. Noonan, E. P. Medici, J. M. Calabrese, ``Overcoming the challenge of small effective sample sizes in home-range estimation'', Methods in Ecology and Evolution 10:10, 1679-1689 (2019) doi:10.1111/2041-210X.13270 .
# \donttest{
# Load package and data
library(ctmm)
data(gazelle)
DATA <- gazelle[[3]]
GUESS <- ctmm.guess(DATA,interactive=FALSE)
FIT <- ctmm.select(DATA,GUESS)
# some human-readable information
summary(FIT)
#> $name
#> [1] "OUf"
#>
#> $DOF
#> mean area diffusion speed
#> 3.719081 4.105042 75.546367 18.709784
#>
#> $CI
#> low est high
#> area (square kilometers) 7031.905004 25246.63769 54889.38680
#> τ (days) 2.805659 4.43780 7.01941
#> speed (kilometers/day) 9.096397 11.74921 14.39671
#> diffusion (square kilometers/day) 175.074470 222.37629 275.24880
#>
# in general, you will want to set iterate=TRUE,trace=TRUE
BOOT <- ctmm.boot(DATA,FIT,iterate=FALSE,trace=FALSE)
# compare to the previous estimate
summary(BOOT)
#> $name
#> [1] "OUf"
#>
#> $DOF
#> mean area diffusion speed
#> 3.645837 3.521521 53.247738 16.899604
#>
#> $CI
#> low est high
#> area (square kilometers) 6315.692787 26009.048716 59377.877730
#> τ (days) 2.852065 4.573115 7.332713
#> speed (kilometers/day) 8.830832 11.580720 14.325160
#> diffusion (square kilometers/day) 166.648035 222.313092 285.876260
#>
# }